Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy—Effects of Therapeutic Alginate Implant in Rat Models
نویسندگان
چکیده
Spinal cord injury (SCI) induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR) spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28). Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies.
منابع مشابه
Induction of traumatic brain and spinal cord injury models in rat using a modified impactor device
Introduction: The use of standard rodent model, allows for the understanding of neuronal injury physiopathology and helping development of therapeutic strategies. Because of eliminating technical problems, we designed a modified impactor device with ability to induce different degrees according to kilodyne from very mild to very severe of spinal cord injury (SCI) and traumatic brain injury (TBI...
متن کاملInduction of Traumatic Spinal Cord Injury in Rat Using a Device Made in Tabriz University of Medical Sciences
Abstract Backgrond:Spinal cord injury (SCI) leads to a serious neurological condition, associating with sensory and motor dysfunctions as well as urinary infections. In the experimental situations, using a valid SCI model helps to understand pathophysiological mechanisms and better ascertainment of therapeutic interventions. Because contusion type of SCI occurs commonly in human, in the pr...
متن کاملاثر متیل پردنیزولون بر ضربالعجل درمانی هیپوترمی سیستمیک در درمان ضایعه تروماتیک تجربی خفیف نخاع در رت
Background and Aim: Many studies have shown the neuroprotective effect of systemic hypothermia in the treatment of spinal cord injury. But the effect of delay hypothermia is not known.The goal of this study was to evaluate the effects of Methylprednisolone on the therapeutic window of hypothermia treatment following experimental Spinal Cord Injury (SCI) by measuring the accumulation of Poly...
متن کاملStudy of Neuroprotective Effects of Green Tea Antioxidant on Spinal Cord Injury of Rat
Purpose: Recent studies revealed the neuroprotective effects of green tea antioxidant on experimental cerebral ischemia, but these effects on spinal cord injury (SCI) has not yet been studied.Materials and Methods: Rats were randomly divided into three groups of 18 rats each as follows: sham group (laminectomy), control group (SCI) and experimental group (EGCG). Spinal cord samples were taken 2...
متن کاملO2: Flaxseed Reduces Proinflammatory Factors IL-1β, IL-18 and TNF-α in Injured Spinal Cord Rat Model
The pathophysiology of acute spinal cord injury (SCI) involves primary and secondary mechanisms of injury. Secondary injury mechanisms include inflammation, oxidative stress. The secondary inflammation of spinal cord tissue after SCI was critical for the survival of motor neuron and functional recovery. Flaxseed is a rich source of lignan phytoestrogen, α-linolenic acid. Flaxseed has rema...
متن کامل